
Schema and WSDL Design Checklist

Information Classification: Restricted - The copyright in this document is the property of Criterion Tec Limited. It may not be copied or

distributed without specific prior written consent from Criterion Tec Limited. © Criterion Tec Limited, 2020.

Quality Assurance

Version: 1.0 Final

Date: 27 05 2008

Distribution: Process Improvement

Document Name: SchemaWSDLChecklist.pdf

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 2 of 34

DISCLAIMER
Criterion believes it has employed personnel using reasonable skill and care in the creation of this document.

However, this document is provided to the reader 'as is' without any warranty (express or implied) as to accuracy or

completeness. Criterion cannot be held liable for any errors or omissions in this document or any losses, damages

or expenses arising consequent to the use of this document by the reader.

CHANGE HISTORY

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 3 of 34

DATE VERSION STATUS

03/12/2007 1.0 DraftA New document

04/04/2008 1.0 DraftB

Added recommendation for

1) ID/IDREF to use form=”unqualified”,

2) Character encoding should be UTF-8,

Qualified the use of xsd:choice,

Added a section on the Data Binding Toolset comparison

report which demonstrates some the issues this checklist

guards against,

Spelling errors corrected,

Inconsistent schema examples in appendix corrected,

Added a new section for constraining facets.

23/04/2008 1.0 DraftC

1.Removed restriction on use of xsd:date and xsd:dateTime.

2. General syntax corrections.

3. Use of venetian blind schema design pattern moved to

assumptions section.

4. Added reference to RFC2119 MUST/SHOULD/MAY and

used throughout the document.

5.Included more examples in the document.

6.Added attribute coverage to <xsd:documentation>

recommendations.

7.Included an example which shows an alternative to using of

xsd:positiveInteger.

8.Added a section on extension and restriction to the Do’s

part of the document.

9.Added check for nillable – to ensure clarity where nillable

was intended.

27/05/2008 Final Add gMonthDay to section 2.5.4

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 4 of 34

CONTENTS
1 INTRODUCTION ... 5

1.1 W3C XML SCHEMA PATTERNS FOR DATA BINDING WORKING GROUP.. 5
1.2 ASSUMPTIONS .. 6

2 DESIGN CHECKLIST ... 7
2.1 SCHEMA DESIGN PATTERNS ... 7
2.2 WSDL DESIGN ... 8
2.3 DATA BINDING TOOLSET COMPARISON REPORT .. 8
1.1 SCHEMA/WSDL DESIGN RULES – DO’S .. 9

1.1.1 CHARACTER ENCODING .. 9
1.1.2 NAMESPACES .. 10
1.1.3 NAMING CONVENTIONS ... 12
1.1.4 CONSTRAINING FACETS .. 13
1.1.5 DOCUMENTATION ... 14
1.1.6 USE OF ATTRIBUTES .. 15
1.1.7 EXTENSION/RESTRICTIONS ... 16
1.1.9 DATA TYPES .. 18
1.1.10 SCHEMA/INSTANCE DATA RE-USE ... 19
1.1.11 OPTIONAL/REQUIRED ELEMENTS (MUST/SHOULD/MAY) .. 20
1.1.12 ERROR MANAGEMENT .. 21

1.2 SCHEMA/WSDL DESIGN RULES – DON’TS ... 22
1.2.1 NAMING CONVENTIONS ... 22
1.2.2 USE OF ATTRIBUTES .. 23
1.2.3 EXTENSION/RESTRICTIONS ... 24
1.2.4 DATA TYPES .. 26
1.2.5 SCHEMA/INSTANCE DATA RE-USE ... 27
1.2.6 SEQUENCES .. 28
1.2.7 CHOICE .. 29

3 GLOSSARY .. 30
4 REFERENCES .. 31
5 APPENDIX A – SCHEMA DESIGN PATTERNS ... 32

5.1 RUSSIAN DOLL .. 32
5.2 SALAMI SLICE .. 33
5.3 VENETIAN BLIND (RECOMMENDED) .. 34

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 5 of 34

1 INTRODUCTION

As part of the deliverables in an SOA SOAP Based Web Service environment, schema and WSDL play an important

part in automating the process of code generation in service implementations.

Typically Product Providers will take the schema and WSDL and use data binding tools to generate skeleton service

implementation code which manages the marshalling of data between the XML pay load and native programming

language constructs. These resulting constructs can then be processed by existing business logic.

Similarly, consumers of these services (for example Portals and Intermediaries), will take the same schema and

WSDL and use data binding tools to generate client implementation code to access the service provided by a

Product Provider.

For this reason it is necessary to ensure that any schema and WSDL which is created can be consumed by the

majority of the state of the art data binding toolsets used to create Web Services based on the contracts defined by

WSDL.

It should be noted that whilst data binding tools manage the marshalling of data between the XML pay load and

programming language constructs, many of these tools will not provide full schema validation for the pay load.

This document contains a checklist of recommendations which, if followed, will ensure those implementing our

schemas will have a good experience with Web Service tools.

Also included in this document are several recommendations which have nothing to do with the data binding

issues but are simply good practice in schema design.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",

"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [10].

1.1 W3C XML SCHEMA PATTERNS FOR DATA BINDING

WORKING GROUP

To help meet this requirement Criterion joined the W3C XML Schema Patterns For Data Binding Working Group

(http://www.w3.org/2002/ws/databinding/) whose remit was to

1. Identify a set of basic schema patterns which are well supported by the majority of state of the art data

binding tools.

2. Identify those advanced schema patterns which are sometimes problematic with state of the art data

binding tools.

3. Document the results of a test suite which involved applying a set of schema patterns to the most of the

popular data binding tools.

4. Create a patterns detection service which analyses a schema or WSDL and reports how well it conforms

to the basic and advanced schema patterns.

5. Aim to encourage vendors to improve data binding tools they produce.

http://www.w3.org/2002/ws/databinding/

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 6 of 34

The first four points have been achieved successfully. However with lack of support from vendors the final point has

had limited success.

Data binding tools aside, a lot of the items in this checklist are common sense. XML Schema does provide a very

rich set of functions to achieve message design. With so many possible ways of defining content structure, it makes

good sense to define a subset of the XML Schema functionality to use for reasons of

• consistency;

• interoperability;

• ease of understanding;

• and ease of maintenance.

Effectively this checklist provides a profile of schema functionality to be used to achieve the benefits above.

1.2 ASSUMPTIONS

The following assumptions have been made during the design of this checklist document.

1. W3C XML Schema is used to define schema content.

2. This document is intended for use by those designing schemas representing message structures

exchanged over a SOAP Based Web Services environment with WSDL used to define the Web Service

interfaces.

3. Schemas are assumed to represent one particular type of message structure, for example either a

request or response message.

4. Where possible, schema complex types and simple types will be based on the UK Governments

schema library with adequate documentation to explain the use of the Government standards

(http://www.govtalk.gov.uk/schemasstandards/xmlschema.asp).

5. Schema design is modelled in UML initially prior to automatic production of the first draft physical

schema document. This checklist is intended for use in the process of automating the creation of the

final draft physical schema to ensure it is fit for purpose.

6. Use of the “Venetian Blind” schema design pattern is assumed. See Appendix A – Schema Design

Patterns for more information.

http://www.govtalk.gov.uk/schemasstandards/xmlschema.asp

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 7 of 34

2 DESIGN CHECKLIST

This checklist is the product of what has been learned from the data binding exercise, several years of schema

design and input from Criterion sponsors.

The purpose of the checklist is to help ensure a good quality design of schema and WSDL and to ensure it is easy to

automate generation of usable source code from the WSDL or schemas for SOAP based Web Service

implementations.

The checklist consists of a set of rules (“do’s” and “don’ts”) which try to ensure good schema/WSDL design and

conformance to the Basic XML Schema Patterns [2] for data binding specification (where this is not possible,

conformance to the Advanced XML Schema Patterns [3] for data binding specification should be attempted).

From a data binding toolset perspective this table shows the impact of ignoring recommendations documented in

this checklist.

IMPACT ON DATA

BINDING

MEANING

None No impact on data binding tools

Possible Possible impact on data binding tools

High High impact on data binding tools

Each item in the checklist will be marked with an impact level which indicates what the impact on data binding

toolsets will be of ignoring that particular recommendation and possibly causing a “data binding toolset problem”.

Definition of a “data binding toolset problem”

A “data binding toolset problem” can be defined as the situation where either

• Code generation will fail by producing code that will not compile or

• A schema structure being misrepresented in the host programming language.

2.1 SCHEMA DESIGN PATTERNS

As stated in the Assumptions section above, the use of the “Venetian Blind” schema design pattern is assumed. See

Appendix A – Schema Design Patterns for more information.

The “Venetian Blind” schema design pattern uses a single global element to contain the payload (typically called the

request or response element). This approach describes a modular way of naming and defining all type definitions

globally. Each globally defined type describes an individual "slat" and can be reused by other components.

In addition, all the locally declared elements can be namespace qualified or namespace unqualified (the slats can be

"opened" or "closed") depending on the “elementFormDefault” attribute setting at the top of the schema.

It is recommended that namespaces are qualified so that the local elements in the instance document must be

qualified with the prefix of the namespace (see below).

http://www.w3.org/TR/xmlschema-patterns/
http://www.w3.org/2002/ws/databinding/edcopy/advanced/advanced.html

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 8 of 34

2.2 WSDL DESIGN

WSDL design should comply with the profiles specified by the Web Services Interoperability Organisation (WS-I) in

particular the WS-I Basic Profile [4]. Specifics are included in the checklist where relevant.

2.3 DATA BINDING TOOLSET COMPARISON REPORT

The W3C XML Schema Patterns for Data Binding Working Group has created a report which compares how various

state of the art data binding tools compare in their support for a set of XML Schema Patterns.

For those who wish to see how a particular data binding toolset copes with a particular schema pattern, a report is

available which details the results of tests performed against each toolset.

The report does not include every toolset in existence but does represent most of the data binding

implementations that currently exist.

The toolset report is available at http://www.w3.org/2002/ws/databinding/edcopy/report/all.html [6]

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.w3.org/2002/ws/databinding/edcopy/report/all.html

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 9 of 34

1.1 SCHEMA/WSDL DESIGN RULES – DO’S

1.1.1 CHARACTER ENCODING

RECOMMENDATION REASON IMPACT IF IGNORED

Schema and WSDL character encoding SHOULD be

specified as UTF-8.

UTF-8 and UTF-16 are recommended by the WS-I in their WS-I Basic Profile [4]. As

Criterion schema and WSDL will consist mainly of the ASCII character set it is safe

to assume that UTF-8 will be sufficient for the purpose.

Possible

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 10 of 34

1.1.2 NAMESPACES
RECOMMENDATION REASON IMPACT IF IGNORED

elementFormDefault and attributeFormDefault

SHOULD be set to “qualified”.

For namespace clarity, it implies that instance documents must specify namespace

prefixes for all components.

Possible

ID/IDREF attributes SHOULD be specified as

form=”unqualified”. This is the only exception to the

recommendation above.

Section 4.3 of the Criterion Namespace Policy document [5] states that ID/IDREF

attributes should be the only case where it is not appropriate to use namespace

qualification.

None

W3C XML Schema namespace SHOULD be qualified

with a prefix of xsd.

For consistency and ease of recognition of W3C XML Schema data types.

None

Each schema SHOULD be self contained with all

referenced complex and simple types defined

locally within the schema file.

If you do need to use include or import to share data definitions then ensure that

the entity being referenced is stored in the same location as the entity from which

it is included. This will maximise the chances of data binding tools working

correctly.

Possible

Each WSDL SHOULD reuse schema definitions via

the import option.

For interoperability it is advisable (see WS-I Basic Profile [4]) to import schemas

into WSDL documents.

High

Each schema SHOULD be named in such a way that

it reflects its functionality and part in a message

exchange.

For clarity and ease of understanding.

E.g. ProvideProductListRequest.xsd

None

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 11 of 34

Each schema SHOULD have a unique namespace

which reflects both the functionality and version

status of the schema.

This is necessary because data binding tools typically use the namespace URL

when managing source code packaging and therefore require unique names. E.g.
http://www.origostandards.com/schema/productlist/v1.0/ProvideProductListRequest

High

The TargetNamespace SHOULD be specified and

SHOULD be the same as the default namespace.

For namespace clarity. The default namespace need not be specified if using

elementFormDefault and attributeFormDefault with value of “qualified”. If the

default namespace is specified then it should be the same as the

TargetNamespace.

The namespace also includes the schema version status which allows instances to

be related to the appropriate schema version.

Possible

http://www.origostandards.com/schema/productlist/v1.0/ProvideProductListRequest

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 12 of 34

1.1.3 NAMING CONVENTIONS
RECOMMENDATION REASON IMPACT IF IGNORED

Authors SHOULD use meaningful element, attribute and type

names.

E.g. complexType: ProductProviderDetails and element:

product_provider_details.

Possible

Authors SHOULD ensure that complex and simple types start with

upper case and element names start with lower case.

The only exception to this is where the type has been taken

directly from existing Government Schema Standards

documented on the govtalk web site

(http://www.govtalk.gov.uk/schemasstandards/xmlschema.asp)

where type names should be preserved in the Criterion schemas.

For a consistent approach to naming of components. E.g.

<xsd:simpleType name="GeographicRegion">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="England"/>

 <xsd:enumeration value="Scotland"/>

 <xsd:enumeration value="Northern Ireland"/>

 <xsd:enumeration value="Wales"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:element name="geographic_region" type="ns:GeographicRegion"/>

None

http://www.govtalk.gov.uk/schemasstandards/xmlschema.asp

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 13 of 34

1.1.4 CONSTRAINING FACETS

RECOMMENDATION REASON IMPACT IF IGNORED

Be aware that constraining facets MAY be ignored by data

binding tools.

Many data binding tools do not provide full schema validation

checking so constraining facets may simply be ignored by data

binding tools. For example maxInclusive and minInclusive, whilst data

binding tools allow code to be successfully generated to represent

the data structure, they may not always guarantee full schema

validation of content.

Possible

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 14 of 34

1.1.5DOCUMENTATION
RECOMMENDATION REASON IMPACT IF IGNORED

Documentation SHOULD be present

for every simpleType, complexType,

element and attribute defined in the

schema.

Providing business terms, definitions,

purposes and dependency information is

also necessary – although this is usually

specified in the models used to create

the physical schemas.

This allows inclusion of business terminology, description of construct, purposes and

dependencies. E.g.

<xsd:element minOccurs="0" name="firmFSARef" type="ns:FSARefType">

 <xsd:annotation>

 <xsd:documentation>Firm FSA Reference</xsd:documentation>

 <xsd:documentation>A number given by the UK FSA.</xsd:documentation>

 <xsd:documentation>May be used by the Lender to identify the MI.</xsd:documentation>

 <xsd:documentation>Required if the MI is an Appointed Rep.</xsd:documentation>

 </xsd:annotation>

</xsd:element>

None

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 15 of 34

1.1.6 USE OF ATTRIBUTES
RECOMMENDATION REASON IMPACT IF IGNORED

Authors SHOULD use attributes

correctly.

Schemas must be designed so that elements are the main holders of information content in the

XML instances. Attributes are more suited to holding ancillary metadata – simple items which

provide more information about the element content.

Attributes should not be used to qualify other attributes where this could cause ambiguity.

E.g. a valid use of attributes would be when specifying a monetary currency.

None

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 16 of 34

1.1.7 EXTENSION/RESTRICTIONS

RECOMMENDATION REASON IMPACT IF IGNORED

If authors require the use of extension

facilities in XML Schema they SHOULD do

so simply by extending a complexType or

a simpleType.

This is the simplest case of extension and is well supported by most toolkits.

For example the current postal address complex type extends the postal address complex

type.

<xsd:complexType name="PostalAddress">

 <xsd:sequence>

 <xsd:element name="line" type="ns:AddressLineType" maxOccurs="5"/>

 <xsd:element name="postcode" type="ns:PostCodeType" minOccurs="0"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CurrentPostalAddress">

 <xsd:complexContent>

 <xsd:extension base="ns:PostalAddress">

 <xsd:sequence>

 <xsd:element name="residential_status" type="xsd:string"/>

 <xsd:element name="start_date" type="xsd:date"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

Possible

If authors require the use of restriction

facilities in XML Schema they SHOULD do

so simply by restricting a complexType or

a simpleType.

This is the simplest case of restriction and is reasonably well supported by most toolkits.

For example the simple type AddressLineType used above could be defined as follows.

<xsd:simpleType name="AddressLineType">

 <xsd:restriction base="xsd:string">

 <xsd:minLength value="1"/>

 <xsd:maxLength value="35"/>

 </xsd:restriction>

</xsd:simpleType>

Possible

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 17 of 34

continued...

The complexType RestrictedPostalAddress could be defined as follows to ensure a post code

is entered.

<xsd:complexType name="RestrictedPostalAddress">

 <xsd:complexContent>

 <xsd:restriction base="ns:PostalAddress">

<xsd:sequence>

 <xsd:element name="line" type="ns:AddressLineType" maxOccurs="5"/>

 <xsd:element name="postcode" type="ns:PostCodeType"/>

</xsd:sequence>

 </xsd:restriction>

 </xsd:complexContent>

</xsd:complexType>

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 18 of 34

1.1.9 DATA TYPES
RECOMMENDATION REASON IMPACT IF IGNORED

Authors SHOULD use xsd:int, xsd:decimal

and xsd:double to represent numeric

values.

This is acceptable to all data binding tools. For example use xsd:int as opposed to

xsd:integer. The definition of the 32 bit integer type in schema is xsd:int and this includes

the integer range -2147483648 to 2147483647 which can be mapped very easily to host

languages like the Java primitive type “int” or C# value type “int”.

High

Authors SHOULD use xsd:date to represent

dates.

This is acceptable to the majority of data binding tools.

High

Authors SHOULD use xsd:boolean when

true/false or yes/no are the only options

required.

xsd:boolean should be sufficient without the need to define additional simple type or

complex types.

None

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 19 of 34

1.1.10 SCHEMA/INSTANCE DATA RE-USE
RECOMMENDATION REASON IMPACT IF IGNORED

Eliminate redundant XML data with the

use of ID/IDREF.

ID/IDREF allows one copy of a data structure to be held and referenced as required within

an instance document. Most data binding tools support this feature quite well.

None

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 20 of 34

1.1.11 OPTIONAL/REQUIRED ELEMENTS (MUST/SHOULD/MAY)
RECOMMENDATION REASON IMPACT IF IGNORED

Must/Should/May (optional and required

ELEMENTS) representations SHOULD be

specified accordingly.

Must – represented by required elements.

Should – represented by required elements using the nillable attribute.

May – represented by optional elements.

Unfortunately some data binding tools do not support the use of the nillable attribute very well.

Don’t use attributes for ‘Should’ cases as these cannot be implemented as nillable.

Possible

If a string element is intended to be

nillable then this SHOULD be deliberately

specified rather than implied by default.

When support for an empty string element is intended the author should ensure that the

element has the @nillable attribute set to true. This makes it clear that nillable is intended by

explicitly setting it rather than being implied by a default @minLength attribute value of

zero.

Example 1: using @minLength – without the minimum length specified the value will default

to zero and effectively allow empty elements. Specifying the minimum length of 1 indicates

that nillable is not allowed, so the intent is clear.

<xsd:simpleType name="LongText">

 <xsd:restriction base="xsd:string">

 <xsd:minLength value="1"/>

 <xsd:maxLength value="500"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:element name=”long_text” type=”ns:LongText”/>

Example 2: using @nillable to denote that empty elements are allowed. The missing

@minLength attribute on the simple type implies that nillable is intended but using the

@nillable attribute makes the intent clear.

<xsd:simpleType name="LongText">

None

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 21 of 34

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="500"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:element name="opt_text" type="ns:LongText" nillable="true" minOccurs=”0”/>

1.1.12 ERROR MANAGEMENT
RECOMMENDATION REASON IMPACT IF IGNORED

Authors SHOULD use SOAP Faults to relay

error conditions back to service

requestor.

Don’t include error constructs in schema definitions. Use the facilities already provided by

the SOAP framework. All errors should be documented separately but the structure for

communication of error information should not be documented in the schema.

None

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 22 of 34

1.2 SCHEMA/WSDL DESIGN RULES – DON’TS

1.2.1 NAMING CONVENTIONS
RECOMMENDATION REASON IMPACT IF IGNORED

Authors SHOULD avoid attribute and element name clashes.

Some data binding tools cannot cope with the situation where an

attribute and an element have the same name.

High

Authors SHOULD avoid the use of duplicate element names

where their types are different.

This is not good practice and can be confusing.

Possible

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 23 of 34

1.2.2 USE OF ATTRIBUTES
RECOMMENDATION REASON IMPACT IF IGNORED

Authors SHOULD avoid using “default”

and “fixed” attributes.

The use of the default and fixed attributes allow specification of instance data values to be

documented in the schema. As most data binding tools do not perform schema validation

against instance content it is not advisable to use these features. The use of “default” implies

schema access is available – to retrieve the default value.

Possible

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 24 of 34

1.2.3 EXTENSION/RESTRICTIONS
RECOMMENDATION REASON IMPACT IF IGNORED

Authors SHOULD avoid the use of

abstract complex types and

substitutionGroup.

Some data binding tools cannot cope with the situation where complex types as defined as

abstract.

High

Authors SHOULD avoid the use of mixed

content.

Mixed content is more appropriate to documentation style XML rather than message

structures. Many data binding tools do not handle mixed content.

High

Authors SHOULD avoid the use of

anonymous types.

This relates directly to the “Venetian Blind” schema design pattern where types are defined

globally.

None

Authors SHOULD avoid the use of

xsd:anyAttribute and xsd:any.

These features effectively allow any data structures to be extended with or without a backing

schema definition (depending on the @processContents attribute). For data binding tools to

be most reliable we need to be more prescriptive, so for this reason try to avoid the use of

these data types.

High

Authors SHOULD avoid the use of

xsd:anyType.

Again, this feature effectively allows any data structures to be implemented. For data binding

tools to function correctly we need to be more prescriptive.

High

Authors SHOULD avoid the use of

blockDefault and finalDefault.

These forbid substitution and restriction/extension. Most data binding tools do not cope with

schemas which use either of these features.

High

High

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 25 of 34

Authors SHOULD avoid the use of

xsd:union.

Most data binding tools cannot cope with anything other than the most basic use of

xsd:union.

Authors SHOULD avoid the use of include

when reusing schema definitions in

WSDL.

For interoperability it is advisable (see WS-I Basic Profile [4]) to import schemas into WSDL

documents.

High

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 26 of 34

1.2.4 DATA TYPES
RECOMMENDATION REASON IMPACT IF IGNORED

Authors SHOULD avoid use of

xsd:nonPositiveInteger,

xsd:nonNegativeInteger, xsd:positiveInteger,

xsd:negativeInteger, xsd:unsignedLong,

xsd:unsignedShort, xsd:unsignedInt or

xsd:unsignedByte.

These types do not map directly to host language data types so many data binding tools

have problems with them.

If you need functionality offered by these types then it is recommended to use

simpleTypes. For example instead of using xsd:positiveInteger use a simpleType like this –

<xsd:simpleType name="PositiveInteger">

 <xsd:restriction base="xsd:int">

 <xsd:minInclusive value="1"/>

 </xsd:restriction>

</xsd:simpleType>

High

Authors SHOULD avoid the use of

xsd:float.

Many data binding tools do not cope with this type very well.

High

Authors SHOULD avoid use of the Gregorian

data types xsd:gDay, xsd:gMonth, xsd:gYear,

xsd:gYearMonth and gMonthDay

Some data binding tools do not cope with these types very well.

High

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 27 of 34

1.2.5 SCHEMA/INSTANCE DATA RE-USE
RECOMMENDATION REASON IMPACT IF IGNORED

Authors SHOULD Avoid the use of

xsd:redefine.

No data binding tools support this schema feature.

High

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 28 of 34

1.2.6 SEQUENCES
RECOMMENDATION REASON IMPACT IF IGNORED

Authors SHOULD avoid xsd:sequence

with maxOccurs > 1 or minOccurs > 1

Many data binding tools do not provide schema validation checking so they will not cope

with finite limitations on maxOccurs and minOccurs.

They also have issues with maintaining element order. E.g.

<xsd:element name="books" type="ns:Books"/>

<xsd:complexType name="Books">

 <xsd:sequence maxOccurs="unbounded"/>

 <xsd:element name="pub_date" type="xsd:date"/>

 <xsd:element name="pub_ISBN" type="xsd:string"/>

 </xsd:sequence>

</xsd:complexType>

Many data binding tools will not handle this data structure correctly.

See ref [1]

The alternative in the example above would be to specify the maxOccurs at the element

level.

<xsd:element name="books" type="ns:Books" maxOccurs="unbounded"/>

<xsd:complexType name="Books">

 <xsd:sequence>

 <xsd:element name="pub_date" type="xsd:date"/>

 <xsd:element name="pub_ISBN" type="xsd:string"/>

 </xsd:sequence>

</xsd:complexType>

High

Authors SHOULD avoid the use of xsd:all.

This option allows for a sequence of elements to appear in any order. Some data binding

tools have a problem supporting this construct.

Possible

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 29 of 34

1.2.7 CHOICE
RECOMMENDATION REASON IMPACT IF IGNORED

Authors SHOULD avoid xsd:choice with

maxOccurs > 1 or minOccurs > 1 if

possible.

Not every data binding tool manages repeating choice correctly.

For example this structure will be problematic:

<xsd:element name="case_reference" type="ns:CaseReference"/>

<xsd:complexType name="CaseReference">

 <xsd:choice maxOccurs="2">

 <xsd:element name="lender_case_reference" type="xsd:string"/>

 <xsd:element name="mi_case_reference" type="xsd:string"/>

 </xsd:choice>

</xsd:complexType>

And this structure will be more acceptable:

<xsd:element name="case_reference" type="ns:CaseReference" maxOccurs="2"/>

<xsd:complexType name="CaseReference">

 <xsd:choice>

 <xsd:element name="lender_case_reference" type="xsd:string"/>

 <xsd:element name="mi_case_reference" type="xsd:string"/>

 </xsd:choice>

</xsd:complexType>

The data binding toolset report [6] shows that a few older toolsets demonstrate this

problem.

Possible

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 30 of 34

3 GLOSSARY

WSDL Web Service Description Language – defines the contract/interface details required to

communicate with an implemented SOAP based Web Service.

SOAP SOAP is a protocol for exchanging XML based messages over networks (normally using

HTTP). SOAP forms the foundation layer of the Web Services stack (WS-*) providing a basic

messaging framework upon which abstract layers can be built.

HTTP Hypertext Transfer Protocol is a communications protocol used to transfer information on

the internet.

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 31 of 34

4 REFERENCES

[1] .Net is just one of the tools having problems with xsd:sequence with maxOccurs > 1

http://www.w3.org/2002/ws/databinding/edcopy/report/report_dotnet_cs_2.0.50727.42.html#SequenceMinOccurs0

MaxOccursUnbounded101

[2] The W3C XML Schema Patterns for Data Binding Working Group’s “Basic XML Schema Patterns”

document.http://www.w3.org/TR/xmlschema-patterns/

[3] The W3C XML Schema Patterns for Data Binding Working Group’s “Advanced XML Schema Patterns”

document.http://www.w3.org/2002/ws/databinding/edcopy/advanced/advanced.html

[4] The Web Services Interoperability Organisation’s Basic Profile document.

 http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

[5] Criterion Namespace Policy Document.

https://www.criterion.org.uk/namespacesandcriterionmessages

[6] Databinding Toolset Comparison Report

http://www.w3.org/2002/ws/databinding/edcopy/report/all.html

[7] RFC 2119

http://www.ietf.org/rfc/rfc2119.txt

http://www.w3.org/2002/ws/databinding/edcopy/report/report_dotnet_cs_2.0.50727.42.html#SequenceMinOccurs0MaxOccursUnbounded101
http://www.w3.org/2002/ws/databinding/edcopy/report/report_dotnet_cs_2.0.50727.42.html#SequenceMinOccurs0MaxOccursUnbounded101
http://www.w3.org/TR/xmlschema-patterns/
http://www.w3.org/2002/ws/databinding/edcopy/advanced/advanced.html
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
https://www.criterion.org.uk/namespacesandcriterionmessages
http://www.w3.org/2002/ws/databinding/edcopy/report/all.html
http://www.ietf.org/rfc/rfc2119.txt

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 32 of 34

5 APPENDIX A – SCHEMA DESIGN PATTERNS

5.1 RUSSIAN DOLL

In this design the schema has one single global element - the root element. All other elements and types are

nested progressively deeper giving it the name due to each type fitting into the one above it. Since the elements in

this design are declared locally they will not be reusable through the import or include statements. This will not

change if the elements are namespace qualified or namespace unqualified.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="TargetNamespace" xmlns:TN="TargetNamespace"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="qualified">

 <xs:element name="BookInformation">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title"/>

 <xs:element name="ISBN"/>

 <xs:element name="PeopleInvolved">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Author"/>

 <xs:element name="Publisher">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="CompanyName"/>

 <xs:element name="ContactPerson"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

The advantages of the Russian Doll approach are: The schema is self contained as it has all of its parts in the

schema and does not interact with other schemas. In as much as it is self contained it is also decoupled. Since the

content of the schema is not visible to other schemas, changes to the schema are decoupled from other schema

components.

The disadvantage is that it is not reusable.

This type of approach would be appropriate for use within a single application or for migration of data from legacy

systems.

http://www.w3.org/2001/XMLSchema

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 33 of 34

5.2 SALAMI SLICE

In this approach all elements are defined globally but the type definitions are defined locally. This way other

schemas may reuse the elements. With this approach, a global element with its locally defined type provide a

complete description of the elements content. This information 'slice' is declared individually and then aggregated

back together and may also be pieced together to construct other schemas.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="TargetNamespace" xmlns:TN="TargetNamespace"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="qualified">
 <xs:element name="BookInformation">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="TN:Title"/>

 <xs:element ref="TN:ISBN"/>

 <xs:element ref="TN:PeopleInvolved"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Title"/>

 <xs:element name="ISBN"/>

 <xs:element name="PeopleInvolved">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="TN:Author"/>

 <xs:element ref="TN:Publisher"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Author"/>

 <xs:element name="Publisher"/>

</xs:schema>

The advantage is that the schema is reusable since the elements are declared globally.

The disadvantages are: the schema is verbose since each element is declared globally and then referenced to

describe the data which leads to larger schema size. This approach also is not self contained and is coupled. The

elements defined may be contained in other schemas and because of this the schema is coupled to other schema

and thus changes to one schema will impact other schemas.

This type of approach is commonly used since it is easy to understand and create reusable components. It would

be an appropriate design to promote reusability and data standardisation across differing applications. This

approach is not, however, recommended when modifications to the standard elements will be necessary. If the

length, data types, restrictions or other modifications of the elements need to be changed then this will cause

added work as well as a larger impact to other systems.

http://www.w3.org/2001/XMLSchema

Schema and WSDL Design Checklist v1.0 Final

Information Classification: Restricted

Page 34 of 34

5.3 VENETIAN BLIND (RECOMMENDED)

This approach is similar to the Russian Doll approach in that they both use a single global element. The Venetian

Blind approach describes a modular approach by naming and defining all type definitions globally (as opposed to

the Salami Slice approach which declares elements globally and types locally). Each globally defined type describes

an individual "slat" and can be reused by other components. In addition, all the locally declared elements can be

namespace qualified or namespace unqualified (the slats can be "opened" or "closed") depending on the

elementFormDefault attribute setting at the top of the schema. If the namespace is unqualified then the local

elements in the instance document must not be qualified with the prefix of the namespace.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="TargetNamespace" xmlns:TN="TargetNamespace"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="qualified">

 <xs:element name="BookInformation" type="TN:BookInformation"

maxOccurs="unbounded"/>

 <xs:complexType name="BookInformation">

 <xs:sequence>

 <xs:element name="Title"/>

 <xs:element name="ISBN"/>

 <xs:element name="PeopleInvolved" type="TN:PeopleInvolvedType"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="PeopleInvolvedType">

 <xs:sequence>

 <xs:element name="Author"/>

 <xs:element name="Publisher"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

The advantages are that since all complex and simple types are defined globally they are available for reuse. In

addition, the option exists to hide the namespace prefix for all locally defined elements in the instance document.

The disadvantages are that the schema is verbose, it is not self contained and it may be coupled with other

schemas.

This type of approach is good when flexibility, reuse and namespace exposure are important. This approach uses a

combination of local and global types unlike the Russian Doll approach which all components are locally declared

and the Salami Slice where all components are globally declared. This is important as it provides the flexibility to

create a schema for most needs since the types can be assigned to elements and extended or restricted as

needed. This would be an appropriate design when data is transferred between diverse organisations or business

units since it provides each group the flexibility for modifications for each specific requirement.

http://www.w3.org/2001/XMLSchema

