
XML Schema 1.1 & Criterion Standards

Information Classification: Restricted - The copyright in this document is the property of Criterion Tec Limited. It may not be copied or

distributed without specific prior written consent from Criterion Tec Limited. © Criterion Tec Limited, 2020.

Discussion Document

Version: 1.0 Final

Date: 23 08 2013

Distribution: OTG

Document Name: XMLSchema11DiscussionDocument.pdf

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 2 of 48

DISCLAIMER
Criterion believes it has employed personnel using reasonable skill and care in the creation of this document.

However, this document is provided to the reader 'as is' without any warranty (express or implied) as to accuracy or

completeness. Criterion cannot be held liable for any errors or omissions in this document or any losses, damages

or expenses arising consequent to the use of this document by the reader.

CHANGE HISTORY

DATE VERSION STATUS

23rd August 2013 1.0 Final
Initial and Final version of

document

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 3 of 48

CONTENTS
1 TERMINOLOGY .. 4
2 INTRODUCTION ... 5

2.1 BACKGROUND .. 5
2.2 PURPOSE OF THIS DOCUMENT .. 5
2.3 STRUCTURE OF THIS DOCUMENT .. 5

3 XML SCHEMA 1.0 ... 6
3.1 LIMITATIONS OF XML SCHEMA 1.0 .. 6

4 XML SCHEMA 1.1 ... 7
4.1 INTRODUCING XML SCHEMA 1.1 ... 7
4.2 BACKWARD COMPATIBILITY ... 8
4.3 NEW FEATURES ... 8
4.4 CRITERION STANDARDS & XSD 1.1 .. 8

5 SCHEMA DEPENDENCY RULES .. 9
5.1 WHAT IS A SCHEMA DEPENDENCY RULE? .. 9
5.2 HOW CRITERION CURRENTLY SUPPORT SCHEMA DEPENDENCY RULES IN XSD 1.0 11
5.3 HOW IMPLEMENTERS CURRENTLY SUPPORT SCHEMA DEPENDENCY RULES ... 12
5.4 HOW SCHEMA DEPENDENCY RULES ARE SUPPORTED WITH ASSERTIONS IN XSD 1.1 13
5.5 HOW ASSERTIONS IN XSD 1.1 CAN BENEFIT IMPLEMENTERS ... 14
5.6 HOW ASSERTIONS IN XSD 1.1 WILL IMPROVE THE CRITERION STANDARDS ... 14
5.7 RECOGNISING SCHEMA DEPENDENCY RULE PATTERNS IN THE CRITERION STANDARDS 15

6 ASSERTIONS ... 19
6.1 SCHEMA DEPENDENCY PATTERNS AND ASSERTIONS .. 19
6.2 CREATING ASSERTIONS ... 19
6.3 TESTING ASSERTIONS .. 19

7 BACKWARD COMPATIBILITY .. 22
8 SOFTWARE VENDORS SUPPORT ... 23
9 KEY DECISIONS .. 26
10 COSTS/BENEFITS... 27

10.1 COSTS .. 27
10.2 BENEFITS ... 28

11 APPENDIX A – XML SCHEMA 1.1 NEW FEATURES ... 29
12 APPENDIX B – DOCUMENTATION REFERENCES ... 47

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 4 of 48

1 TERMINOLOGY

This section contains some of the terms and acronyms used throughout the document. Where a term or acronym

is referred to in the document, a bracketed reference [n] is supplied to provide more information as and when

required.

TERM/ACRONYM MEANING

XML eXtensible Markup Language [1]

A markup language that defines a set of rules for encoding documents in a format that is

both human-readable and machine-readable.

XSD XML Schema [2]

Published as a W3C recommendation in May 2001, XSD is one of several XML Schema

languages. It was the first separate schema language for XML to achieve Recommendation

status by the W3C. Like all XML Schema languages, XSD can be used to express a set of rules

to which an XML document must conform in order to be considered ‘valid’ according to that

schema. However, unlike most other schema languages, XSD was also designed with the

intent that determination of a document’s validity would produce a collection of information

adhering to specific data types.

XPath XML Path Language [3]

A query language for selecting nodes from an XML document.

Schematron Schematron rules based validation [4]

Schematron is a rule-based validation language for making assertions about the presence or

absence of patterns in XML. It is a structural schema language expressed in XML using a

small number of elements and XPath.

Schema

Dependency

Rules

A schema dependency rule describes a relationship between components in a schema which

must be adhered to. Sometimes referred to as Business Rules.

XSD 1.0 does not support the concept of schema dependency rules. With the introduction of

assertions in XSD 1.1 these can now be supported.

Assertion An assertion is a programmatic test which returns either true or false.

XSD 1.1 provides support for assertions which can be used to support checking of schema

dependency rules.

XML Data Binding Representing information from an XML document as business objects. [5]

This allows applications to access the data in the XML from the object rather than using XML

parsers to retrieve the data from a direct representation of the XML itself.

XForms An XML format for the specification of a data processing model and user interface for the

XML data.

XForms separates the data model from the presentation of that data by using XML to model

the data and XHTML to display it. The data displayed in a form is stored in an XML document

and the data submitted from the form is transported over the internet using XML. Separating

data from presentation makes XForms device independent, because the data model can be

used for all devices. The presentation can then be customized for different user interfaces.

QNB Quotes and New Business Standards.

These were the first Criterion Standards to be published and are often referred to as the

QNB Standards. They provide structures for comparison quotes and new business

applications for a range of life and pensions products.

<tpsdata> Trading Partner Specific Data.

An open content structure included in the QNB Standards to allow trading partner specific

data (or data structures) to be exchanged.

MIG Message Implementation Guidelines.

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 5 of 48

A document produced by Criterion which describes (in non technical terms) the message

structure and data content associated with a particular Criterion Standard schema. This

document also describes the schema dependency rules which implementers must be aware

of.

2 INTRODUCTION

2.1 BACKGROUND
XML Schema [2] (or XSD as it is commonly known) can be used to express a set of rules to which an XML [1]

document must conform in order to be considered 'valid' according to that schema. XSD is all about expressing

rules (rules about what data is allowed, how the data must be organized and the relationships between data). The

primary reason for defining an XML Schema is to formally describe an XML document.

An XML Schema can be used as a contract between the sender and the receiver of an XML message: "Here's the

information we agree to exchange, and the format of the information."

An additional benefit of XSD is that a schema can be used to generate code, referred to as XML Data Binding [5].

This code allows the contents of XML documents to be treated as objects within the programming environment,

thus speeding up development of systems which marshal data to and from XML messages.

2.2 PURPOSE OF THIS DOCUMENT

XSD 1.0 was approved as a W3C Recommendation in May 2001 and has been widely adopted by a large number of

XML implementations. After a long wait XSD 1.1 was approved as a W3C Recommendation in April 2012. This

document looks at how the new features introduced with XSD 1.1 could benefit the Criterion Standards community.

2.3 STRUCTURE OF THIS DOCUMENT

This document covers:

• The limitations of XSD 1.0;

• The new features provided in XSD 1.1;

• The new features which are relevant to the Criterion Standards;

• How these new features can benefit implementers;

• The options for including support these new features in the Criterion Standards;

• And the effort involved in doing so.

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 6 of 48

3 XML SCHEMA 1.0

3.1 LIMITATIONS OF XML SCHEMA 1.0

XML Schema 1.0 is successful in that it has been widely adopted and largely achieves what it set out to. It has however

been subject to some criticism:

1. It is too complicated (the specification is several hundred pages in a very technical language), so it is hard to

use by non-experts — but many non-experts need schemas to describe data formats. The XSD 1.0 W3C

Recommendation [6] itself is extremely difficult to read. Most users find W3Cs XML Schema Primer [7] much

easier to understand.

2. There is no built in facility to support schema dependency rules.

3. There are many inconsistencies in the language, for example that elements by default are mandatory where

as attributes by default are optional.

At the moment Criterion Standard schemas are produced based on the XSD 1.0 specification.

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 7 of 48

4 XML SCHEMA 1.1

4.1 INTRODUCING XML SCHEMA 1.1

XSD 1.1 [8] became a W3C Recommendation in April 2012, which means it is an approved W3C specification. This in

turns means that software vendors can safely implement support for the new functionality provided in XSD 1.1

without the threat that the specification will change. Indeed many software vendors have now included support for

XSD 1.1.

There are a large number of improvements which have been made with the introduction of XSD 1.1 (detailed in

Section), the most significant new feature is the ability to define assertions (schema dependency rule checking)

against the XML document content by means of XPath 2.0 [3] expressions (an idea borrowed from Schematron [4]).

Assertions are the most useful new feature to the Criterion community as this will provide the ability to carry out

schema dependency rule checking at the XML validation stage, rather than including code to check this in the

business logic layer. This will benefit an implementer as schema dependency rule checking will be taken care of by

the existing “out of the box” XML validation process thus providing the opportunity to catch validation errors before

the business logic layer.

Many software vendors currently provide support for XSD 1.1 in their XML tools. (In the longer term this support

could also benefit the XML Data Binding [5] process where additional functionality can be provided directly in the

code generated from this process.)

At the moment there is sufficient support in the software available to provide considerable benefits for those

implementers who want to take advantage of this. More details are provided later in this document, see Section 8.

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 8 of 48

4.2 BACKWARD COMPATIBILITY
XSD 1.1 is backward compatible with XSD 1.0. This means that an XML document conforming to XSD 1.0 can be

validated using the 1.1 schema validation process, but an XML document conforming to XSD 1.1 might not validate

using the 1.0 validation process.

XSD 1.1 is a superset of XSD 1.0

4.3 NEW FEATURES
The new features introduced in XSD 1.1 are described in Appendix A.

Each new feature is described with an associated example and its relevance to the Criterion Standards.

4.4 CRITERION STANDARDS & XSD 1.1
There are two new features introduced in XSD 1.1 (Section Error! Reference source not found.) which Criterion rate

as highly relevant to the Criterion Community. These are:

1. The <assert> Element ;

2. The <assertion> Facet.

Both of these features will help Criterion define schema dependency rules within the schema.

The remainder of the new features are either rated as “Medium” or “Low” relevance to the Criterion Standards. This

does not mean that they will not be very useful to individual implementers and how they manage schemas within

their own organisation.

From an Criterion Standards and Criterion Community point of view the ability to process business rules (schema

dependency rules) is the most useful feature in XSD 1.1. The remainder of this document will discuss schema

dependency rules and the possible mechanisms for introducing XSD 1.1 automated support for these into the

Criterion Standards.

Note that from this point forward in the document the term “assertion” relates to the use of either the <assert>

element or the <assertion> facet in XSD v1.1.

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 9 of 48

5 SCHEMA DEPENDENCY RULES
This section will explain the following in more detail:

1. What a schema dependency rule is;

2. How Criterion currently support them;

3. How implementers currently support them;

4. How they can better be supported with assertions in XSD 1.1;

5. How assertions can benefit implementers;

6. How assertions will improve the Criterion Standards.

This section will also discuss the recognition of schema dependency rule patterns in the Criterion Standards.

5.1 WHAT IS A SCHEMA DEPENDENCY RULE?

A schema dependency rule is a restriction placed on the content of an XML document. This is sometimes termed a

business rule or a policy although strictly speaking they are not always exactly the same thing. For example

sometimes business rules or policies cannot be expressed in terms of schema components because their scope

extends beyond that of a particular schema. In this case the business rule or policy isn’t actually a schema

dependency rule. However in the majority of cases (90%+) the business rules expressed in the documentation for

the Criterion Standards are actually true schema dependency rules.

Schema dependency rules are best described using an example. The small sample schema structure below describes

a ‘journey’ with the following characteristics:

• A ‘journey’ must consist of one or more stages;

• Each ‘stage’ has a ‘mode’ of ground, water or land travel;

• Each ‘stage’ also has a ‘transportation’ of airplane, bus, car, hot air balloon, ship, train or yacht.

There are some schema dependency rules which need to be applied to this schema:

• A mode of air must have transportation of airplane or hot air balloon;

• A mode of ground must have transportation of bus, car or train;

• A mode of water must have transportation of ship or yacht.

i.e. “the transportation must be appropriate for the mode”

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 10 of 48

MODE ALLOWED TRANSPORTATION

air airplane

hot air balloon

ground bus

car

train

water ship

yacht

For example both snippets of XML below are valid in terms of XSD 1.0:

Snippet 1 is valid in terms of XSD 1.0

Snippet 2 is valid in terms of XSD 1.0 but does not meet the schema dependency rules detailed above.

XSD 1.0 has no mechanism to express these rules, so this check cannot be performed at the stage where the

XML document is schema validated. As a result an implementer must either:

a) write code to check for this rule using the subsequent business logic or

b) use another schema language to carry out the rule check.

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 11 of 48

5.2 HOW CRITERION CURRENTLY SUPPORT SCHEMA

DEPENDENCY RULES IN XSD 1.0
Criterion currently express dependency rules as prose which appears in the schema itself and the Message

Implementation Guidelines (MIG) for a schema. For example:

In the XSD 1.0 compliant schema there are three dependency rules which are expressed in prose.

In the MIG:

The dependency documentation provided in the XSD 1.0 compliant Criterion Standards are human readable but not

machine processable.

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 12 of 48

5.3 HOW IMPLEMENTERS CURRENTLY SUPPORT SCHEMA

DEPENDENCY RULES
With XSD 1.0 Criterion Standards’ implementers must find their own alternative way to process schema dependency

rules which cannot be managed within the schema itself. There are a few ways to do this, but the two most popular

mechanisms are described below.

1. Inclusion in the Implementer’s Business Logic

The first mechanism is to use application code at the business logic layer to implement the schema dependency

rules. A programmer must interpret the rules as specified in the documentation in the schema or MIG and

translate these into their native programming language. This can require considerable effort, depending on the

size and complexity of the schema. It also has the effect that these rules are not transparent - being hidden in

the programming logic.

2. Use of another Schema Language

By using another schema language, for example Schematron [4], to allow the schema dependency rules to be

specified in a machine readable format. This must be implemented alongside, but separate from, the usual XSD

1.0 schema validation.

A few years ago Criterion investigated the use of Schematron alongside XML Schema with a view to automatically

generating XForms [9] which could then be used to:

1. create Criterion schema compliant messages;

2. test compliance of existing messages;

3. provide web forms to capture data related to a schema.

This was done as part of the XForms [9] research carried out by Criterion in 2006-2007. XForms has never really

been accepted by the industry due to lack of support in development tools and browsers. However Schematron did

prove to be an ideal way to provide schema dependency rules for the Criterion Standards, but because this was

required in addition to XSD 1.0 there was no appetite to include Schematron files as part of the Criterion Standards

deliverables.

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 13 of 48

5.4 HOW SCHEMA DEPENDENCY RULES ARE SUPPORTED

WITH ASSERTIONS IN XSD 1.1
Using the sample ‘journey’ schema as an example the schema dependency rules can be specified by using an

assertion, as explained below.

The rules are as follows:

MODE ALLOWED TRANSPORTATION

air airplane

hot air balloon

ground bus

car

train

water ship

yacht

In the XSD 1.1 compliant schema we include an assertion statement at the foot of the complex type:

Schema validation will now fail if the following XML snippet was presented for validation:

The XSD 1.1 assertion carries out the check which could not be handled in XSD 1.0.

NOTE: <assert> elements specified in a complex type are and’ed together, so all must be true in order that the check

is passed. This can sometimes provide easier to understand assertion statements. For example the three <assert>

elements below provide the same check as the single <assert> above but are simpler to read.

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 14 of 48

5.5 HOW ASSERTIONS IN XSD 1.1 CAN BENEFIT

IMPLEMENTERS

Implementers can benefit from the use of assertions in the following ways:

1. They allow schema dependency rules to be expressed declaratively in the schema. This keeps all rules relating

to the structure and content of XML messages in one central place – the schema file;

2. They allow changes to schema dependency rules to be made easily. No complex coding changes are required;

3. They provide transparency of schema dependency rules. The centralised location of all information related

to the structure and content of XML messages makes it easier to understand what is required in terms of

producing valid ‘business’ messages.

5.6 HOW ASSERTIONS IN XSD 1.1 WILL IMPROVE THE

CRITERION STANDARDS

Similar benefits will apply to the Criterion Standards, but from a slightly different perspective, as Criterion do not have

any implementations to maintain:

1. They allow schema dependency rules to be expressed declaratively;

2. They allow changes to schema dependency rules to be made easily (although Criterion will probably maintain

the prose which defines the rules in the schema documentation as well);

3. They provide transparency of schema dependency rules (although it could be said that the definition of the

rules in the schema documentation, the MIG, also provides this).

NOTE: Some thought will need to be given to the impact the use of assertions may have on the Criterion change

control process, version management and backward compatibility rules (applicable when Criterion apply minor

versioning changes).

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 15 of 48

5.7 RECOGNISING SCHEMA DEPENDENCY RULE PATTERNS IN THE CRITERION STANDARDS

In XSD 1.0 the schema dependency rules are expressed using prose, and there a certain number of ‘patterns’ which these rules fall into. This section explains the ‘patterns’

currently in use in the Criterion Standards and how they can be translated to XSD 1.1 assertions.

Recognising these patterns as they are used in the Criterion Standards can help with provision of the required <assert> element which will also fall into a finite set of

patterns.

 DEPENDENCY PATTERN DEPENDENCY MEANING & EXAMPLE

1 Required when/if ‘XPath condition’ omitted otherwise

An optional element becomes mandatory based on a condition but must be omitted otherwise.

e.g.

<xsd:documentation>Dependency: Required if ‘assessment_postponed_ind’ = "true", omitted

otherwise.</xsd:documentation>

<xsd:documentation>Dependency: Required when ‘auto_enrolment/status’ is present, omitted

otherwise.</xsd:documentation>

2 Required when/if ‘XPath condition’ optional otherwise

An optional element becomes mandatory based on a condition but otherwise remains optional.

e.g.

<xsd:documentation>Dependency: Required if ‘assessment_postponed_ind’ = "true", otherwise

optional.</xsd:documentation>

<xsd:documentation>Dependency: Required when ‘auto_enrolment/status’ is present, otherwise

optional.</xsd:documentation>

3 Optional when ‘XPath condition’, omitted otherwise

An optional element may be provided under certain conditions but must be omitted otherwise.

e.g.

<xsd:documentation>Dependency: Optional if ‘auto_enrolment/status’ = "Non-Eligible Job Holder" OR "Entitled

Worker", omitted otherwise.</xsd:documentation>

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 16 of 48

 DEPENDENCY PATTERN DEPENDENCY MEANING & EXAMPLE

<xsd:documentation>Dependency: Optional if ‘opt_in_date’ is present, omitted otherwise.</xsd:documentation>

4 Omitted when ‘XPath condition’, optional otherwise

An optional element is not required under certain conditions, but remains optional otherwise.

e.g.

<xsd:documentation>Dependency: Omitted if ‘opt_out_date’ is present and ‘opt_out_date_valid_ind’ = "true",

optional otherwise.</xsd:documentation>

5 At least one of the child elements must be present if the parent

element is present
At least one of the optional child elements must be present if the optional parent is present.

e.g.

<xsd:documentation>Dependency: At least one of the child elements must be present if the parent element is

present.</xsd:documentation>

6 At least one of the child elements must be present At least one of the optional child elements must be present in a mandatory parent element.

e.g.

<xsd:documentation>Dependency: At least one of the child elements must be present.</xsd:documentation>

7 Either ‘XPath condition 1’ or ‘XPath condition 2’ but not both

Distinct optional elements are not permitted together in the message. Either one or the other can optionally be

present but not both.

e.g.

<xsd:documentation>Dependency: Agency details may appear either as a Group/Sub-Group, or against the

contract, but not both.</xsd:documentation>

8 If ‘XPath condition’ then at least one of <list> must be present

Under certain conditions at least one of a list of elements must be present.

e.g.

<xsd:documentation>Dependency: If ‘dimensions’ is present, at least one of ‘region_dimension’,

‘product_line_dimension’ and ‘tps_dimensions’ must be present.</xsd:documentation>

9 At least one of <list of elements> must be present At least one of a list of optional elements must be present.

e.g.

<xsd:documentation>Dependency: At least one of ‘item/reference’ and ‘item/description’ must be

present.</xsd:documentation>

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 17 of 48

Each of the schema dependency patterns described above can be represented by an <assertion> using XPath 2.0.

For example taking the first dependency pattern above to show the resultant assertions which are needed to automate the checking of the schema dependency rules.

 DEPENDENCY PATTERN DEPENDENCY MEANING & EXAMPLE

1 Required when/if ‘XPath condition’ omitted otherwise

An optional element becomes mandatory based on a condition but must be omitted otherwise.

e.g. on the ‘assessment_date’ element in the Auto Enrolment Employee List schema.

<xsd:documentation>Dependency: Required when ‘auto_enrolment/status’ is present, omitted

otherwise.</xsd:documentation>

<!-- Make sure if status is supplied then the assessment_date is also supplied -->

<xsd:assert test="if (status) then assessment_date

 else if (not(status))

 then true()

 else false()"/>

e.g. on ‘reassessment_date’ element in the Auto Enrolment Employee List schema.

<xsd:documentation>Dependency: Required if ‘assessment_postponed_ind’ = "true", omitted

otherwise.</xsd:documentation>

<!-- Make sure if assessment_postponed_ind is true then the reassessment_date is provided, but must

be omitted otherwise -->

<xsd:assert test="if (assessment_postponed_ind = 'true') then reassessment_date

 else if (not(assessment_postponed_ind))

 then not(reassessment_date)

 else if (assessment_postponed_ind = 'false')

 then not(reassessment_date)

 else false()"/>

XML Schema 1.1 & Criterion Standards v1.0 Final

Information Classification: Restricted

Page 18 of 48

Using the schema dependency rule pattern approach it would be possible to document a set of ‘skeletal’ assertions which could be used as a starting point for creating

any assertions which would be required in the future. This would speed up the otherwise fairly complex and time consuming process for creating all the assertions

required for each schema.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 19 of 48

6 ASSERTIONS
This section describes in more detail the technicalities of creating assertions and the testing effort involved in

producing assertions.

6.1 SCHEMA DEPENDENCY PATTERNS AND ASSERTIONS
Assertions are essentially logical statements which return a value of true or false. An assertion will check that a

schema dependency rule is being complied with (or not). In XSD 1.1 assertions can be checked at the schema

validation processing stage. Assertions must be authored as part of the schema development and uses XPath 2.0 to

provide reference to any required schema components.

6.2 CREATING ASSERTIONS
Assertion statements can be built based on the schema dependency patterns described in Section 5.7.

Criterion recommend specifying several <assert> elements instead of one large complex <assert> element.

For example:-

Using the example in section 5.7 where the schema dependency rule is “Make sure if ‘assessment_postponed_ind’ is true

then the ‘reassessment_date’ is provided, but must be omitted otherwise “

The single <assert> element could be specified as

<xsd:assert test="if (assessment_postponed_ind = 'true') then reassessment_date

 else if (not(assessment_postponed_ind))

 then not(reassessment_date)

 else if (assessment_postponed_ind = 'false')

 then not(reassessment_date)

 else false()"/>

This is a fairly complex statement, which would be simpler to understand if it was split across three assertions (which

will be and’ed together) as follows:

<xsd:assert test="if (assessment_postponed_ind = 'true') then reassessment_date else true()"/>

<xsd:assert test="if (not(assessment_postponed_ind)) then not(reassessment_date) else true()"/>

<xsd:assert test="if (assessment_postponed_ind = 'false') then not(reassessment_date) else true()"/>

It is advantageous to keep <assert> elements as simple to understand as possible.

6.3 TESTING ASSERTIONS
Assertions require to be tested to ensure that they cover the requirements.

The most effective approach to testing assertions is to use example instance documents which represent the various

combinations of data which an assertion is expected to manage.

For example:-

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 20 of 48

Using the example in section 5.7 where the schema dependency rule is “Make sure if ‘assessment_postponed_ind’ is true

then the ‘reassessment_date’ is provided, but must be omitted otherwise “

which is represented by the <assert> elements:

A1: <xsd:assert test="if (assessment_postponed_ind = 'true') then reassessment_date else true()"/>

A2: <xsd:assert test="if (not(assessment_postponed_ind)) then not(reassessment_date) else true()"/>

A3: <xsd:assert test="if (assessment_postponed_ind = 'false') then not(reassessment_date) else true()"/>

The following XML snippets can be used to test these <assert> elements:

XML EXAMPLE SCHEMA VALIDATION RESULT

<automatic_enrolment>

 <qualifying_earnings>

 <amount currency="GBP">25000.00</amount>

 <period>Annual</period>

 </qualifying_earnings>

 <status>Eligible Job Holder</status>

 <status_decision>Auto Enrolment</status_decision>

 <assessment_date>2012-08-18</assessment_date>

<assessment_postponed_ind>true</assessment_postponed_ind>

 <reassessment_date>2013-08-18</reassessment_date>

</automatic_enrolment>

Pass

A1, A2 and A3 all true

<automatic_enrolment>

 <qualifying_earnings>

 <amount currency="GBP">25000.00</amount>

 <period>Annual</period>

 </qualifying_earnings>

 <status>Eligible Job Holder</status>

 <status_decision>Auto Enrolment</status_decision>

 <assessment_date>2012-08-18</assessment_date>

<assessment_postponed_ind>false</assessment_postponed_ind>

 <reassessment_date>2013-08-18</reassessment_date>

</automatic_enrolment>

Fail

‘reassessment_date’ is not required because the assessment

has not been postponed.

A3 false

<automatic_enrolment>

 <qualifying_earnings>

 <amount currency="GBP">25000.00</amount>

 <period>Annual</period>

 </qualifying_earnings>

 <status>Eligible Job Holder</status>

 <status_decision>Auto Enrolment</status_decision>

 <assessment_date>2012-08-18</assessment_date>

<assessment_postponed_ind>true</assessment_postponed_ind>

</automatic_enrolment>

Fail

‘reassessment_date’ is required because assessment has

been postponed.

A1 false

<automatic_enrolment>

Fail

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 21 of 48

XML EXAMPLE SCHEMA VALIDATION RESULT
 <qualifying_earnings>

 <amount currency="GBP">25000.00</amount>

 <period>Annual</period>

 </qualifying_earnings>

 <status>Eligible Job Holder</status>

 <status_decision>Auto Enrolment</status_decision>

 <assessment_date>2012-08-18</assessment_date>

 <reassessment_date>2013-08-18</reassessment_date>

</automatic_enrolment>

‘reassessment_date’ is not required because the assessment

has not been postponed.

A2 false

Breaking one large <assert> element into a number of smaller <assert> elements also makes testing much more

manageable.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 22 of 48

7 BACKWARD COMPATIBILITY

This section describes how Criterion could provide support for both XSD 1.1 and XSD 1.0 (allowing those not able to

support XSD 1.1 to still effectively use the Standards).

Assuming that Criterion will only provide support for assertions (schema dependency rules) there are two ways this

could be achieved:

APPROACH IMPACT

Criterion would publish both XSD 1.0 and XSD

1.1 versions of all schemas.

The XSD 1.0 version will not include any

<assert> elements or <assertion> facets.

The XSD 1.1 version will only differ from the

XSD 1.0 version by the addition of <assert>

elements and <assertion> facets.

Implementers

Implementers need to make the choice which version of the

schema they need.

Criterion

Criterion would need to publish two versions of each schema.

Only one version would be maintained by Criterion with a

suitable process applied to generate the second from the first.

Criterion would only publish the XSD 1.1

version of all schemas which would include

<assert> elements and <assertion> facets.

A transformation process (XSLT) would be

made available to allow implementers to

remove the <assert> elements and <assertion>

facets where they cannot be supported.

Implementers

Implementers need to remove the assertions from the

schemas using the published XSLT transformation if their XML

processing capabilities cannot understand XSD 1.1.

Criterion

Criterion would maintain and publish one version of each

schema. Criterion would also need to supply a reliable

mechanism for removing assertions where they are not wanted

or needed.

Based on an agreement to proceed with XSD 1.1, the option to choose for delivery of support for assertions is one

of the key decisions which must be made; see Section 9 for more details.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 23 of 48

8 SOFTWARE VENDORS SUPPORT

This section provides details of:

1. Which XML tools supports XML Schema 1.1;

2. How much of the functionality is supported;

3. When support is planned if not already provided;

4. Suitable alternatives if support is not available.

TOOLSET XSD 1.1 FEATURES

SUPPORTED

NOTES

Saxon [11]

Saxonica software

providing XSD, XSLT and

XQuery processing

capabilities.

Full support V9.4 supports all features of XSD 1.1

V9.1 introduced initial support for major features of XSD 1.1

XERCES [12]

Apache software used for

parsing, validating,

serializing and

manipulating XML.

Majority support V2.11 supports the majority of features of XSD 1.1 (full support for assertions is included)

JAXP [13]

A Java XML API which

provides the capability to

parse, validate and

manipulate XML.

Majority support V1.4 supports the majority of features of XSD 1.1 (and forms part of the standard Java Development Kit) and

provides many of the APIs used by many other XML tools including Saxon and XERCES.

Full support for assertions is included.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 24 of 48

TOOLSET XSD 1.1 FEATURES

SUPPORTED

NOTES

Oxygen XML Editor [14]

XML editor and authoring

tool which provides

facilities to validate XML

and debug XSLT and

XQuery.

Full support Oxygen offers full compliance with both XSD 1.0 and 1.1. This is the tool preferred by Criterion for

development of the Criterion Standards.

Microsoft .NET

Framework [15]

No support The .NET framework provides a number of facilities for working with XML including MSXML, XmlSerialiser and

Visual Studio. None of these support XSD 1.1 at the moment and there are no publicised plans to do so in the

future.

There is a .NET compatible release of Saxon called Saxon .NET which would provide an alternative for .NET

implementers who wish to process XSD 1.1 schemas.

Liquid XML [16]

Liquid XML studio

integrates into Microsoft

Visual Studio allowing

development of XML and

XSD applications.

No support Liquid XML integrates with the .NET framework but has no support for XSD 1.1 and no publicised plans to do

so in the future.

There is a .NET compatible release of Saxon called Saxon .NET which would provide an alternative for .NET

implementers who wish to process XSD 1.1 schemas.

Altova XMLSpy [17]

XML editor and authoring

tool which provides

facilities to validate XML

No support XMLSpy offers compliance with the majority of the XSD 1.0 specification, but there is no current support for

XSD 1.1.

Altova have indicated that they do plan to provide support in a future release.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 25 of 48

TOOLSET XSD 1.1 FEATURES

SUPPORTED

NOTES

and debug XSLT and

XQuery.

Oxygen can be used as an alternative to XMLSpy.

The table above is not an exhaustive list of XML tools but represents some of the most commonly used.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 26 of 48

9 KEY DECISIONS
This discussion document is intended to provoke thought on the subject of XSD 1.1 support in the Criterion

Standards.

KEY DECISION REQUIRED NOTES

Should assertions be included in the Criterion

Standards as part of a published schema?

There is sufficient support for XSD 1.1 in the XML tools available

that some implementers could achieve considerable benefit

from this feature.

Should assertions be included in new Criterion

Standards only or should they be added to

existing Criterion Standards?

To take full advantage of assertions they should be applied to

all Criterion Standards. However it would probably make sense

to identify one particular standard to address first and assess

the development and testing effort involved in adding

assertions.

Should assertions be added to existing

Criterion Standards on an ongoing

maintenance basis or by a concerted project

based effort?

This depends on the amount of effort involved in including

support for assertions in any particular Criterion Standard. If

it’s minimal then it may be better to do this on an ongoing

maintenance basis. If it involves considerable effort then

perhaps a project basis may be more appropriate.

Should schema annotations (which describe

the schema dependency rules to be processed

by the assertions) remain as part of the

published schema?

The annotations will still be required in order to satisfy the

requirements for generation of the MIGs.

The options for publication of the Criterion

Standards which support XSD 1.1 are

discussed in Section 7 where backward

compatibility is a key issue.

Criterion can either:

Publish XSD 1.1 compliant version of the

riterion Standards and allow implementers to

drop assertions if they don’t need them;

Or publish both XSD 1.0 and 1.1 compliant

versions of the Criterion Standards with

implementers making the appropriate choice.

There are pros and cons to both options available, see Section

7 for details.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 27 of 48

10 COSTS/BENEFITS

This section provides details of the associated costs and benefits of providing support for assertions in the Criterion

Standards.

It should be noted that the costs will only be incurred once by Criterion during the process of creating and testing

the assertions, whereas the benefits will be gained by each implementing organisation.

10.1 COSTS
The costs (in terms of Criterion resource) involved in developing support for assertions in a Criterion Standard can

be summarised as follows:

• the development and testing effort required in creating the <assert> elements and <assertion> facets

associated with the annotated schema dependency rules in each schema;

• the development of any style sheets necessary to transform schemas to support backward compatibility

requirements;

• Updating the processes involved in the internal schema development lifecycle.

Schema Development

TASK REQUIRED NOTES

Create <assert> element Using the dependency rule patterns documented in Section 5.7 it should be

possible to quickly identify a pattern to be used to model the <assert> element

required.

The <assert> element may need to be split into several <assert> elements for

simplicity (see Section 6.2).

Test <assert> element Testing an assertion will require each potential combination of values to be

provided in sample XML messages with each being schema validated during the

test (see Section 6.3)

This could be quite time consuming and is dependent on the complexity of the

schema dependency rule being modelled as an assertion.

Create <assertion> facet <assertion> facets are much simpler to create than <assert> elements. They will

also be used much more infrequently than <assertion> elements.

Test <assertion> facet Similarly it should be simpler to test an <assertion> facet.

Transformation Processes

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 28 of 48

There may be the need to publish both XSD 1.0 and 1.1 versions of the Criterion schemas. In this case it is most

likely that Criterion will develop one master copy of the schema (1.1) and use a transformation process to generate

the other version (1.0) ready for publication. The transformation process requires to be developed as part of the

support for XSD 1.1.

Internal Schema Development Lifecycle Processes

The internal processes used by Criterion as part of normal schema development life cycle will need to be adapted

to accommodate XSD 1.1 and assertions. These include:

• updating internal document generation processes (MIG generation);

• updating internal schema quality assurance processes.

Using the ‘off the shelf’ support for XSD 1.1 provided by XML parsers should keep costs low for implementers.

10.2 BENEFITS

The benefits to implementers can be summarised as the inclusion of assertions in the schemas allowing

dependency checks to be invoked as part of the schema validation stage of XML message processing. Without

assertions the onus is on the implementer to provide some way of performing these dependency checks.

In many circumstances these checks are only performed as part of the programming logic in the business layer of

the application handling the data being passed via the XML message. By managing these checks at the schema

validation stage, invalid XML content should not reach the business layer of the application.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 29 of 48

11 APPENDIX A – XML SCHEMA 1.1 NEW FEATURES

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

The <assert>

Element

Policies and rules are expressed in XSD 1.1 using assertions, e.g.

<1element name="publication" type="PublicationType"/>

<complexType name="PublicationType">

 < sequence>

 < element name="title" type="string" />

 < element name="author" type="string" />

 < element name="date" type="string" />

 < element name="isbn" type="string" minOccurs="0"/>

 < element name="publisher" type="string" minOccurs="0"/>

 </ sequence>

 < attribute name="kind" type="string" use="required"/>

 < assert test="if (isbn)

 then publisher

 else if (not(isbn))

 then not(publisher)

 else false" />

</complexType>

Both the ‘isbn’ and ‘publisher’ elements are optional, but we want to make sure

that if one is entered then the other is too. The assertion above implements this

rule.

NOTE 1:

The positioning of assertions is important.

High.

Assertions can provide a mechanism to declaratively

express dependency rules in schemas rather than burying

them in procedural code.

1 Throughout this document, in an effort to simplify the examples, namespace prefixes have been omitted. E.g. <element> instead of <xsd:element>.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 30 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

Assertions always look downwards. The root context of an assertion will be the

type where the assertion is defined. So some thought is required in order to

position a specific assertion correctly.

There are two scenarios to be aware of when deciding where an assertion is

placed:

Place the assertions on the complexType of the root element.

This will give you maximum flexibility over what can be incorporated into your

assertion. For example, if at a later date you may decide to incorporate additional

factors into your assertion then since you've positioned it at the top of the XML

tree you will be able to reference any data in the current document.

Place the assertions on the complexType that the assertion applied to.

This makes the type and its assertions reusable across documents.

 More investigation is required to determine the recommended placement of

assertions.

NOTE 2: Assertions cannot make use of an XPath expression which makes

reference to an external resource. For example an XPath expression like this is not

permitted:

<assert test="publisher = doc('publishers.xml')//publisher" />

The doc() function in XPath is used to provide access to external documents. The

statement above makes reference to a physically separate instance document

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 31 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

(‘publishers.xml’) which provides a list of permitted publishers. This will not work

in XSD 1.1.

With assertions in XSD 1.1 the context is limited to the schema and the instance

being validated.

The <assertion>

Facet

The <assertion> facet is used to constrain a simple type e.g.

<element name="evenPriceChangePercent" type="evenPriceChangePercentType"/>

<simpleType name="evenPriceChangePercentType">

 <restriction base="decimal">

 <assertion test="$value <= 100 and $value >= 0"/>

 <assertion test="$value mod 2 = 0"/>

 </restriction>

</simpleType>

The “evenPriceChangePercentType” simple type allows only even numbers

between 0 and 100.

High.

Similar to the <assert> element used in complex types this

can be used to specify additional validation rules.

Conditional

Inclusion (Version

Control)

XSD 1.1 introduces a new namespace, the version control namespace. By

convention vc: is used to prefix items in this namespace.

vc:minVersion and vc:maxVersion may be placed as attributes on an element

declaration to indicate which version of the schema specification the declaration

was written to.

vc:typeAvailable and vc:typeUnavailable may be placed as attributes on an

element declaration to signal to a schema validator that a vendor-unique data

type is being used by the element.

Medium.

This may be considered by Criterion in the future as XSD

1.1 moves to XSD 1.2 or XSD 2.0 and onwards.

At the moment, because XSD 1.0 does not support this, it

would be of little use when used with XSD 1.1.

Worth considering for the future when further releases of

XSD evolve.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 32 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

vc:facetAvailable and vc:facetUnavailable may be placed as attributes on an

element declaration to signal to a schema validator that a vendor-unique facet is

being used by the element.

e.g.

There are two declarations of an element ‘book’;

 the first declaration is used by schema validators that implement version 1.1 (or

later) of the schema specification;

the second declaration is used by schema validators that implement any version

of the schema specification between 1.1 and 2.5:

<element name="book" vc:minVersion="1.1">

 declare the Book element

</element>

<element name="book: vc:minVersion="1.1" vc:maxVersion="2.5">

 declare the Book element

</element>

Schema pre-processing will remove the type definition which is not relevant.

Note that this feature is provided to future proof XSD. It is of little use until a

future version of XSD is created to operate alongside the new XSD 1.1 version.

This feature has no connection with the individual schema versioning information

recorded for each individual schema authored and published by Criterion using

the schema “version” attribute. Criterion will continue with this practice to denote

versioning of individual schemas.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 33 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

Substitution Group

can

Substitute with

Multiple Elements

The substitutionGroup capability has been enhanced so that an element can

substitute with multiple elements e.g.

<element name="metro" substitutionGroup="metrorail subway" type="xsd:NCName" />

The <metro> element is substitutable for either <metrorail> or <subway>.

Medium.

Criterion use the substitutionGroup approach for current

schema developments that are implemented with the

Criterion Message Transmission Guidelines version 2 and

above [10]. Introducing this feature into the Criterion

schemas would not provide significant benefit.

The

yearMonthDuration

data type

A yearMonthDuration value is a constrained version of the duration data type

which only allows years and months to be specified e.g.

<element name="event_duration" type="yearMonthDuration" />

<event_duration>P1Y3M</event_duration>

<event_duration>P15M</event_duration>

Medium.

The duration data type is used sparingly by Criterion, but it

is worth noting that the new yearMonthDuration data type

is available in XSD 1.1.

The

dayTimeDuration

data type

A dayTimeDuration value is a constrained version of the duration data type which

only allows a day and time to be specified e.g.

<element name="conference_duration" type="dayTimeDuration" />

<conference_duration>P35DT01H22M30S</conference_duration>

<conference_duration>PT11H</conference_duration>

Medium.

The duration data type is used sparingly by Criterion, but it

is worth noting that the new dayTimeDuration data type is

available in XSD 1.1.

New Facet –

explicitTimezone

Use this with date data types to specify whether the time zone is required, the

values can be ‘required’, ‘prohibited’ or ‘optional’. e.g.

<simpleType name='bare-date'>

 <restriction base='date'>

Medium.

This could be useful to ensure that the time-zone portion

of dates is not entered where it is not expected.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 34 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

 <explicitTimezone value='prohibited'/>

 </restriction>

</simpleType>

 <date>2013-05-04Z</date> would fail the schema validation check

<date>2013-05-04+04:00</date> would fail the schema validation check<date>2013-05-

04</date> would pass the schema validation check

Target

Namespace

Allows restriction of Complex Types from a foreign schema which has a different

target namespace (targetNamespace).

NOTE: This is only applies when using qualified elements and attributes

(elementFormDefault=’qualified’ & attributeFormDefault=’qualified’) in the schema

definition for the base type) e.g.

Schema books.xsd:
<xsd:schema targetNamespace="http://www.books.org"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:books="http://www.books.org"

 elementFormDefault="qualified"

 attributeFormDefault="qualified">

 <xsd:element name="book" type="books:BookType"/>

 <xsd:complexType name="BookType">

 <xsd:sequence>

 <xsd:element name="title" type="xsd:string"/>

 <xsd:element name="author" type="xsd:string" maxOccurs="unbounded"/>

 <xsd:element name="date" type="xsd:date"/>

 <xsd:element name="isbn" type="xsd:string"/>

 <xsd:element name="publisher" type="xsd:string"/>

 </xsd:sequence>

 <xsd:attribute name="attr1" type="xsd:string" use="required"/>

Medium.

Most of the Criterion Standards use qualified elements and

attributes (the only exception to this is the QNB Standards)

thus allowing the use of this feature.

This feature could be useful to those wishing to customise

(via restriction) the Criterion Standards (in particular the

schema data patterns used in the Flexible Integration

Toolkit [19]) and at the same time remain compliant with

the Criterion Standards.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 35 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

 <xsd:attribute name="attr2" type="xsd:string" use="required"/>

 </xsd:complexType>

</xsd:schema>

Schema booksinlibrary.xsd

<xsd:schema targetNamespace="http://www.libraries.org"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:lib="http://www.libraries.org"

 xmlns:books="http://www.books.org"

 elementFormDefault="qualified"

 attributeFormDefault="qualified">

 <xsd:import namespace="http://www.books.org" schemaLocation="books.xsd"/>

 <xsd:element name=”book_in_library” type=”lib:BookInLibraryFromBooksSchema”/>

 <xsd:complexType name="BookInLibraryFromBooksSchema">

 <xsd:complexContent>

 <xsd:restriction base="books:BookType">

 <xsd:sequence>

 <xsd:element name="title" type="xsd:string"

targetNamespace="http://www.books.org" />

 <xsd:element name="author" type="xsd:string" maxOccurs="2"

targetNamespace="http://www.books.org" />

 <xsd:element name="date" type="xsd:date"

targetNamespace="http://www.books.org" />

 <xsd:element name="isbn" type="xsd:string"

targetNamespace="http://www.books.org" />

 <xsd:element name="publisher" type="xsd:string"

targetNamespace="http://www.books.org"/>

 </xsd:sequence>

 <xsd:attribute name="attr1" type="xsd:string" use="required"

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 36 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

targetNamespace="http://www.books.org" />

 <xsd:attribute name="attr2" type="xsd:string" use="required"

targetNamespace="http://www.books.org" />

 </xsd:restriction>

 </xsd:complexContent>

 </xsd:complexType>

</xsd:schema>

By adding the target namespace to the elements in the restricted type the original

definition can be located and used accordingly.

NOTE:

In the example above the element called ‘book_in_library’ must use the

namespace prefix lib: (‘http://www.libraries.org’), whereas all its child elements

must use the namespace prefix books: (‘http://www.books.org’) e.g.

<lib:book_in_library

 xmlns:books="http://www.books.org"

 xmlns:lib="http://www.libraries.org"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=http://www.libraries.org booksinlibrary.xsd

 books:attr1="attr1" books:attr2="attr2">

 <books:title>book title</books:title>

 <books:author>author 1</books:author>

 <books:author>author 2</books:author>

 <books:date>2013-07-22</books:date>

 <books:isbn>isbn</books:isbn>

 <books:publisher>publisher</books:publisher>

</lib:book_in_library>

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 37 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

The <alternative>

Element

Conditional Type Alternatives.

The <alternative> element is used to provide an element a choice of types, the

actual type used in an instance document depends on the value of attributes, e.g.

<publication kind="book">

<title>Beginning XSLT</title>

<author>Jeni Tennison</author>

<date>2006</date>

<isbn>1-57851-777-X</isbn>

<publisher>Wrox</publisher>

</publication>

<publication kind="magazine">

<title>Computing</title>

<author>BCS</author>

<date>2013</date>

<genre>IT </genre>

<circulation>2500000</circulation>

<frequency>Monthly</frequency >

</publication>

<element name="publication" type="PublicationType">

 <alternative test="@kind eq 'book'" type="BookType" />

 <alternative test="@kind eq 'magazine'" type="MagazineType" />

</element>

The content of <publication> depends on the kind of publication.

If the value of the kind attribute is 'book' then <publication>'s type is BookType; if

the value of the kind attribute is 'magazine' then its type is MagazineType;

otherwise, its type is PublicationType.

Low.

In the Criterion Standards schemas content structures are

described at the design stage with the provision of specific

types as appropriate.

On the occasions where this concept is required in the

Criterion schemas (the QNB schemas) the use of ‘xsi:type’

has been used in instance documents to denote the type of

structure being presented.

More recent Criterion schema developments have avoided

the use of “xsi:type” in favour of a prescriptive and

predictable XML structure.

Conditional type alternatives are, however, an

improvement on ‘xsi:type’.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 38 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

Schema Wide

Attributes

(defaultAttributes)

defaultAttributes is used to specify a set of attributes that apply to every

complexType in a schema document.

<schema

 defaultAttributes="myDefaultAttributes">

<element name="publication" type="PublicationType"/>

<complexType name="PublicationType">

 < sequence>

 < element name="title" type="string" />

 < element name="author" type="string" />

 < element name="date" type="string" />

 < element name="isbn" type="string" minOccurs="0"/>

 < element name="publisher" type="string" minOccurs="0"/>

 </ sequence>

 < attribute name="kind" type="string" use="required"/>

</complexType>
<:attributeGroup name="myDefaultAttributes">

 <attribute name="id" type="xsd:ID" use="required" />

 </attributeGroup>

</schema>

In the example above each complex type would also have a mandatory xsd:ID

attribute associated with it.

NOTE: Default attributes cannot be overridden. In the example above we cannot

decide that some of the “id” attributes can be optional – they will all be mandatory

based on the definition above.

Low.

In current schema development Criterion use attributes

very sparingly so this would not provide much benefit for

those developments.

However in older Criterion Standards, for example the QNB

schemas, we do have extensive use of attributes.

Unfortunately their use is not consistent across a whole

schema. The xsd:ID attributes, for example, are mostly

optional but some are mandatory.

Open Content This allows open content to be specified throughout a defined structured e.g.

<element name="publication" type="PublicationType"/>

<complexType name="PublicationType">

Low.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 39 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

 <openContent mode="interleave">

 <any processContents="skip"/>

 </openContent>

 < sequence>

 < element name="title" type="string" />

 < element name="author" type="string" />

 < element name="date" type="string" />

 < element name="isbn" type="string" minOccurs="0"/>

 < element name="publisher" type="string" minOccurs="0"/>

 </ sequence>

 < attribute name="kind" type="string" use="required"/>

</complexType>

<publication kind="book">

 <binding>hard cover</binding>

 <title>Beginning Java<title>

 <size>A4</size >

 <author>Ivor Horton</author>

 <date>2002</date>

</publication>

The <binding> and <size> elements have been included as ‘open’ content.

This does not provide the level of prescription necessary in

most Criterion schemas so is of little use.

The <openContent> feature does provide additional

facilities for implementers to customise schemas to suit

their own purposes. However Criterion have already

documented a number of mechanisms which allow for

extension of the Criterion schemas – see the Criterion

Standards Implementation Guidelines [20]

Vendor Unique

Extensions

Software vendors can add their own data types and facets e.g.

A vendor creates a new decimal data type and a facet for specifying the delimiter

to be used in the decimal value:

<simpleType name="money">

 <restriction base="vendor:decimal">

 <vendor:delimiter value="," />

 <restriction>

Low.

This is not something Criterion would encourage as the

Criterion Standards are used across a number of different

platforms and technologies using different software tools.

Criterion also use standard data representations and only a

restricted list of options when defining simple types e.g.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 40 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

</simpleType>

<money>50000,00</money>

The vendor allows the comma to be used as the decimal delimiter.

min value, max value, max no of digits, max no of decimal

places.

Inherited Attributes Attributes can be declared to be inheritable and can then be used by descendant

elements that contain <alternative> elements e.g.

<element name="publication" type="PublicationType"/>

<complexType name="PublicationType">

 <sequence>

 <element name="title" type="string"/>

 <choice>

 <element name="book" type="BookType"/>

 <element name="magazine" type="MagazineType"/>

 </choice>

 </sequence>

 <attribute name="lang" inheritable="true" type="Language" use="required" />

</complexType>

<complexType name="BookType">

 <sequence>

 <element name="isbn" type="string"/>

 <element name="publisher" type="string">

 <alternative test="@lang eq 'EN'" type="EnglishPublisher" />

 <alternative test="@lang eq 'FR'" type="FrenchPublisher" />

 </element>

 </sequence>

</complexType>

<complexType name="MagazineType">

 <sequence>

 <element name="circulation" type="int"/>

Low.

See Conditional Type Alternatives above. The same

comments apply here.

In the Criterion Standards schemas content structures are

described at the design stage with the provision of specific

types as appropriate.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 41 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

 <element name="frequency" type="string"/>

 </sequence>

</complexType>

<simpleType name="Language">

 <restriction base="string">

 <enumeration value="EN"/>

 <enumeration value="FR"/>

 </restriction>

</simpleType>

<xsd:simpleType name="EnglishPublisher">

 <restriction base="xsd:string">

 <enumeration value="Wrox"/>

 <xsd:enumeration value="McMillan"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="FrenchPublisher">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Bayard"/>

 <xsd:enumeration value="Le Castor Astral"/>

 </xsd:restriction>

</xsd:simpleType>

The XML below would throw a validation error because the <publisher> element

contains a value of type FrenchPublisher not EnglishPublisher.

<publication lang="EN">

 <title>Beginning XSLT<title>

 <book>

 <isbn></isbn>

 <publisher>Bayard</publisher>

 </book>

</publication>

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 42 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

Unordered Content

using the <all>

Element

The <all> element has been enhanced to allow elements with multiple

occurrences. Also, <all> can have the wildcard, <any>, at any child position e.g.

<element name="book" type=”BookType/>

<complexType name=”BookType”>

 <all>

 <any maxOccurs="unbounded" processContents="skip"/>

 <element name="author" type="xsd:string" maxOccurs="unbounded"/>

 <element name="title" type="xsd:string"/>

 <element name="date" type="xsd:string"/>

 <element name="isbn" type="xsd:string"/>

 <element name="publisher" type="xsd:string"/>

 </all>

 </complexType>

The content of BookType is: any number of extension elements, any number of

authors, title, date, isbn, and publisher, and they can be arranged in any order in

instance documents.

<book>

 <date>date0</date>

 <isbn>isbn0</isbn>

 <publisher>publisher0</publisher>

 <author>author</author>

 <title>title0</title>

 <price>25.00</price>

</book>

The <price> element has been added via the <any> within the <all>. The elements

can appear in any order with the use of <all>.

Low.

Criterion no longer use <all> or <any> in order to be as

prescriptive as possible. The only exception to this is

the existing QNB Standard which allows the use of

<tpsdata> elements which use <any> content.

The enhancements to <all> and <any> provide additional

facilities for implementers to customise schemas to suit

their own purposes. However Criterion have already

documented a number of mechanisms which allow for

extension of the Criterion schemas – see the Criterion

Standards Implementation Guidelines [20].

New Attributes of

the <any> and

The <any> and <anyAttribute> wildcard elements have been enhanced with

additional attributes that allow you to indicate the kind of extension elements or

Low.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 43 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

<anyAttribute>

Wildcard Elements

attributes not allowed. The notNamespace attribute is used to indicate the

namespace that extension elements or attributes cannot come from. The

notQName attribute is used indicate an element or attribute that is not allowed

e.g.

<any notNamespace="http://www.example.org"/>

<anyAttribute notNamespace="http://www.example.org"/>

<any notQName="xsl:value-of"/>

The first wildcard does not allow extension elements from the

http://www.example.org namespace.

The second wildcard does not allow extension attributes from the

http://www.example.org namespace.

The third wildcard does not allow xsl:value-of as an extension element.

Criterion no longer use <all> or <any> in order to be as

prescriptive as possible. The only exception to this is

the existing QNB Standard which allows the use of

<tpsdata> elements which use <any> content.

The enhancements to <all> and <any> do however provide

improved facilities for those customising the Criterion

schemas for their own purposes.

More Flexible Rules

for Wildcards

Wildcards (<any>) are important tools for extensible languages, but in XSD 1.0, it is

difficult or impossible to use wildcards near optional content. XSD 1.1 is much

more flexible e.g.

<element name="book" type="BookType"/>

<complexType name="BookType">

 <sequence>

 <element name="title" type="string"/>

 <element name="numPages" type="int" minOccurs="0"/>

 <any minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

</complexType>

Low.

Criterion no longer use <all> or <any> in order to be as

prescriptive as possible. The only exception to this is

the existing QNB Standard which allows the use of

<tpsdata> elements which use <any> content.

The enhancements to <all> and <any> do however provide

improved facilities for those customising the Criterion

schemas for their own purposes.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 44 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

<book>

 <title>The Origin of Wealth</title>

 <numPages>321</numPages>

 <reviews>Excellent</reviews>

 <binding>Hardcover</binding>

</Book>

In XSD 1.0 the element declaration shown here is not legal, because there are

documents with elements like <numPages> that could match either the explicit

element declaration or the wildcard. In XSD 1.1, this schema is valid, and the

<numPages> element is validated as an integer by the element declaration.

The <reviews> and <binding> elements are validated against the <any> wildcard.

Enhanced Usage

of the ID data type

In XML Schema 1.1 an element can have multiple attributes of type ID and the ID

type can have a fixed or default value e.g.

<element name="stereo" type=”StereoType”>

 <complexType name=”StereoType”>

 <sequence>

 …

 </sequence>

 <attribute name="model-number" type="ID" use="required" />

 <attribute name="serial-number" type="ID" use="required" />

 </complexType>

<attribute name="food" type="ID" fixed="Popcorn" />

Low.

Criterion has an internal standard where by all ID attributes

are given the name ‘id’.

There is no immediate requirement to allow an element to

have more than one id.

Current schema design guidelines at Criterion prohibit

the use of the ‘fixed’ attribute on element

specifications. The same position should probably be

taken regarding the use of fixed values for attributes.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 45 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

The <override>

element

The <override> element replaces the XSD 1.0 <redefine> element, which has been

deprecated. The <override> element is used to replace the contents of a globally

declared item in another schema e.g.

Office-calendar.xsd declares a <meeting> element with content <start-time>, <end-time>,

and <room-number>. Conference-calendar.xsd overrides <meeting>'s content with <track-

id>, <speaker>, and <room-capacity>:

<element name="meeting">

 <complexType>

 <sequence>

 <element name="start-time" type="time" />

 <element name="end-time" type="time" />

 <element name="room-number" type="string" />

 </sequence>

 </complexType>

</element>

Conference-calendar.xsd overrides the meeting element:

<override schemaLocation="office-calendar.xsd">

 <element name="meeting">

 <complexType>

 <sequence>

 <element name="track-id" type="string" />

 <element name="speaker" type="string" />

 <element name="room-capacity" type="int" />

 </sequence>

 </complexType>

 </element>

</override>

Low.

Criterion do not permit the use of <redefine> in the

Criterion Standards so are unlikely to use <override>.

XSD will support <redefine> until the next major release of

XSD (e.g. 2.0) when the deprecated <redefine> element will

be removed.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 46 of 48

FEATURE DESCRIPTION & EXAMPLE RELEVANCE TO CRITERION SCHEMAS

The anyAtomicType

data type

The anyAtomicType is the union of the value spaces of all the primitive types e.g.

<element name="value" type="anyAtomicType" />

<value xsi:type="string">Hello World</value>

<value xsi:type="decimal">12.36</value>

<value xsi:type="boolean">true</value>

Low.

This is similar to anySimpleType but more restrictive.

Criterion do not use anySimpleType, preferring to be

prescriptive, so are unlikely to use anyAtomicType.

The

dateTimeStamp

data type

A dateTimeStamp value is identical to the dateTime data type, except it requires

time zone be specified e.g.

<element name="date_of_birth" type="dateTimeStamp" />

<date_of_birth>1976-06-21T16:04:00-6:00</date_of_birth>

<date_of_birth>1980-01-01T24:00:00-6:00</date_of_birth>

Low.

The time zone is optional in dateTime but in practise it is

very rarely used. Criterion would be unlikely to make use of

this new data type.

The error data type The xsd:error data type is used to trigger a schema validation error. It may be

used wherever a type is used e.g.

<element name="publication" type="PublicationType">

 <alternative test="@kind eq 'book'" type="BookType" />

 <alternative test="@kind eq 'magazine'" type="MagazineType" />

 <alternative test="(@kind ne 'book') and (@kind ne 'magazine')" type="xsd:error" />

</element>

If the ‘kind’ attribute contains anything other than ‘book’ or ‘magazine’ then a

schema validation error will be triggered.

Low.

As stated above it is unlikely that Criterion would use the

alternative element, and as the error type is associated

with the alternative element it follows that similarly it is

unlikely that Criterion could make use of the error type.

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 47 of 48

12 APPENDIX B – DOCUMENTATION REFERENCES

[1] XML

http://en.wikipedia.org/wiki/XML

[2] XML Schema

http://en.wikipedia.org/wiki/Xsd

[3] XPath 2.0

http://en.wikipedia.org/wiki/XPath_2.0

[4] Schematron

http://en.wikipedia.org/wiki/Schematron

[5] XML Data Binding

http://en.wikipedia.org/wiki/XML_Data_Binding

[6] W3C XML Schema 1.0 Specification

http://www.w3.org/TR/xmlschema-1/

[7] XML Schema Primer

http://www.w3.org/TR/xmlschema-0/

[8] W3C XML Schema 1.1 Specification

http://www.w3.org/TR/xmlschema11-1/

[9] XForms

http://en.wikipedia.org/wiki/XForms

[10] Criterion Message Transmission Guidelines

https://www.criterion.org.uk/mtg

[11] Saxon Support for XML Schema 1.1

http://saxonica.com/documentation9.4-demo/html/schema-processing/schema11/

[12] XERCES Support for XML Schema 1.1

http://xerces.apache.org/xerces2-j/xml-schema.html#supported-schema-1.1-features

[13] JAXP

http://docs.oracle.com/javase/tutorial/jaxp/

[14] Oxygen XML Editor

http://www.oxygenxml.com/

[15] Microsoft .NET Framework

https://en.wikipedia.org/wiki/.NET_Framework

[16] Liquid XML

http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Xsd
http://en.wikipedia.org/wiki/XPath_2.0
http://en.wikipedia.org/wiki/Schematron
http://en.wikipedia.org/wiki/XML_Data_Binding
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema11-1/
http://en.wikipedia.org/wiki/XForms
https://www.criterion.org.uk/mtg
http://saxonica.com/documentation9.4-demo/html/schema-processing/schema11/
http://xerces.apache.org/xerces2-j/xml-schema.html#supported-schema-1.1-features
http://docs.oracle.com/javase/tutorial/jaxp/
http://www.oxygenxml.com/
https://en.wikipedia.org/wiki/.NET_Framework

XML Schema 1.1 & Criterion Standards V1.0 Final

Information Classification: Restricted

Page 48 of 48

http://www.liquid-technologies.com/whatsnew.aspx

[17] Altova XmlSpy

http://www.altova.com/xmlspy.html

[18] Criterion Receive Automatic Enrolment Employee List Standard

https://www.criterion.org.uk/ReceiveAutoEnrolmentAssessedEmployeeList

[19] Criterion Flexible Integration Toolkit (Pre-population)

https://www.criterion.org.uk/fit

[20] Criterion Standards Implementation Guidelines

https://www.criterion.org.uk/csig

http://www.liquid-technologies.com/whatsnew.aspx
http://www.altova.com/xmlspy.html
https://www.criterion.org.uk/ReceiveAutoEnrolmentAssessedEmployeeList
https://www.criterion.org.uk/fit
https://www.criterion.org.uk/csig

